Outline of this series:
I. The Impetus for This Series
II. Special Relativity: The Standard Explanation
IV. A Further Look at Simultaneity
VII. Further Thoughts on the Meaning of Spacetime and the Validity of STR
VIII. Mettenheim on Einstein’s Relativity
Bibliography (appended to each part of the series)
A FURTHER LOOK AT SIMULTANEITY
Phipps (2012) writes (pp. 166-7):
By destroying the conceptual basis for distant simultaneity Einstein got rid of the “now” that each of us perceives as dividing past from future. In so doing he discredited perception as a criterion of truth, and removed physics from the realm of personal experience by denying the description of Nature as manifested in experience as the goal and definition of physics…. Einstein proclaimed that the world as a progression of experiences from past to future was an illusion existing in a Minkowskian four-dimensional “world” of spacetime symmetry that was the only reality. in that world “now” was physically meaningless and played no role. Differently-moving observers disagreed on it, so it was illusory for all observers and all time…. Subsequently this new spacetime reality acquired a mathematical curvature that made it really real. The physical thus became a metaphor for the mathematical, the ultimate repository of truth; and personal experience no longer entered scholarly discussion except to exemplify the snares besetting the unanointed.
So, I ask, how was this epochpmaking sales job accomplished? In a word, through the example of “Einstein’s train.” This is of course an oversimplification. No single example could achieve such a bouleversement of human thought. But it was the clincher. Before it, legitimate doubt could exist — after it, doubt became aberration or dementia. Why was the train example so convincing? Simply because its homely materials made it directly accessible to the thought of Everyman. It systematic steps of reasoning so eloquently expressed the triumph of rationality that no sane person could resist. Here was pioneering science brought down to a level any attentive student could follow and appreciate. It was a truly definitive sales approach, the master virtue of which was that it left no reply possible, no objection admissible, no disagreement conceivable. At its conclusion the product had to be bought, regardless of cost to preconceptions….
To reiterate, Einstein’s conclusion from his Gedanken train example … is that spatially separated events judged simultaneous by one inertial observer are judged non-simultaneous by another; hence, distant simultaneity is “relative” — which is understood to mean that it does not exist. It is an un-concept.
Phipps then gives several pages to the mathematics of Einstein’s train. He could have saved himself a lot of trouble if he had simply pointed out Einstein’s trick, as I do in “A Fatal Flaw?”. The trick is to deny simultaneity, by calling it relative, because the “moving” observer (M’) sees the flashes of light at different times than the “stationary” observer (M).
I have concocted a thought experiment similar to Einstein’s that restores simultaneity. Here’s a diagram of the setup:
As before, lightning strikes the embankment at A and B, which are equidistant from M, who therefore sees the flashes at the same time. I have introduced an omniscient observer (O), who is on a platform directly above M. O has a mechanism that allows him to trigger the flashes at A and B at a time of his choosing. O can trigger the flashes so that they are seen simultaneously by M’ and M’, that is, when M’ and M are directly opposite one another as the train moves past M.
O triggers the flashes by sending a light-speed signal to high-intensity lamps at A and B. The lamp at A is aimed to the right; the lamp at B is aimed to the left. When the signal from O reaches the lamps, they turn on instantly, and their beams then travel toward M. O can time the sending of his signal so that the flashes arrive at M just as M’ arrives at M. M’ will therefore see the flashes at the same time as M; that is, M and M’ will see the flashes simultaneously and both will perceive that they emanated from A and B simultaneously.
Here is O‘s timing algorithm:
F = L/v – 2L/c , where
F = time at which O sends a signal to A and B, in seconds before M’ reaches A
L = distance A-M = M-B , in light-seconds
v = velocity of train, as a fraction of c
c = velocity of light
Thus if L = 1 and v = 0.5 , F = 0 ; that is, O sends the signal at the instant that M’ is directly opposite A. (It would be trivial to add a constant for any delay between the arrival of M’ at A, O‘s perception of that arrival, and O‘s sending of the signal to A and B.) In the case of v = 0.1 , F would occur 8 seconds before M’ reaches A; in the case of v = 0.9 , F would occur 0.89 seconds after M’ reaches A. In every case, the signal from A would catch up with M’ just as he is opposite M, and the signal from B would arrive at M’ just as he is opposite M.
What about time dilation? Doesn’t M’ “really” take less time to arrive at M than suggested by the algorithm? If that effect were real, it would be trivial to calculate the time-dilation effect and apply it to the estimate of F. Any apparent slowing of the clock at M’ wouldn’t affect O‘s measurement of time, which is what matters here.
Simultaneity is thus rescued from the jaws of special relativity.
BIBLIOGRAPHY
Online courses in special relativity
Lecture 1 of “Special Relativity”, Stanford University
All lectures of “Special Relativity”, Khan Academy
All lectures of “Understanding Einstein: The Special Theory of Relativity”, Standford University
Selected books, articles, and posts about special relativity
Barnett, Lincoln. The Universe and Dr. Einstein. New York: Time Incorporated, 1962.
Bondi, Hermann. Relativity and Common Sense: A New Approach to Einstein. New York: Doubleday & Company, 1946.
Buenker, Robert J. “Commentary on the Work of Thomas E. Phipps, Jr. (1925-2016)”. 2016.
Einstein, Albert. “On the Electrodynamics of Moving Bodies”. Annalen der Physik, 322 (10), 891–921 (1905).
———. Relativity: The Special and General Theory. New York: Henry Holt, 1920.
Epstein, Lewis Carroll. Relativity Visualized. San Francisco: Insight Press, 2000.
Hall, A.D. “Lensing by Refraction…Not Gravity?“. The Daily Plasma, December 23, 2015.
Marrett, Doug. “The Sagnac Effect: Does It Contradict Relativity?“. Conspiracy of Light, 2012.
———. “Did the Hafele and Keating Experiment Prove Einstein Wrong?“. Conspiracy of Light, 2013.
von Mettenheim, Christoph. Popper versus Einstein. Heidelberg: Mohr Siebeck, 1998.
———. Einstein, Popper and the Crisis of Theoretical Physics (Introduction: The Issue at Stake). Hamburg: Tredition GmhH, 2015.
Noyes, H. Pierre. “Preface to Heretical Verities [by Thomas E. Phipps Jr.]”. Stanford: Stanford Linear Accelerator Center, Stanford University, June 1986.
Phipps, Thomas E. Jr. “On Hertz’s Invariant Form of Maxwell’s Equations”. Physics Essays, Vol. 6, No. 2 (1993).
———. Old Physics for New: A Worldview Alternative to Einstein’s Relativity Theory. Montreal: Apeiron, first edition, 2006.
———. Old Physics for New: A Worldview Alternative to Einstein’s Relativity Theory. Montreal: Apeiron, second edition, 2012 (The late Dr. Phipps — Ph.D. in nuclear physics, Harvard University, 1950 — styled himself a dissident from STR, for reasons that he spells out carefully and exhaustively in the book.)
Rudolf v. B. Rucker. Geometry, Relativity, and the Fourth Dimension. New York: Dover Publications, 1977.